Design of allele-specific protein methyltransferase inhibitors.

نویسندگان

  • Q Lin
  • F Jiang
  • P G Schultz
  • N S Gray
چکیده

Protein arginine methyltransferases, which catalyze the transfer of methyl groups from S-adenosylmethionine (SAM) to arginine side chains in target proteins, regulate transcription, RNA processing, and receptor-mediated signaling. To specifically address the functional role of the individual members of this family, we took a "bump-and-hole" approach and designed a series of N(6)-substituted S-adenosylhomocysteine (SAH) analogues that are targeted toward a yeast protein methyltransferase RMT1. A point mutation was identified (E117G) in Rmt1 that renders the enzyme susceptible to selective inhibition by the SAH analogues. A mass spectrometry based enzymatic assay revealed that two compounds, N(6)-benzyl- and N(6)-naphthylmethyl-SAH, can inhibit the mutant enzyme over the wild-type with the selectivity greater than 20. When the E117G mutation was introduced into the Saccharomyces cerevisiae chromosome, the methylation of Npl3p, a known in vivo Rmt1 substrate, could be moderately reduced by N(6)-naphthylmethyl-SAH in the resulting allele. In addition, an N(6)-benzyl-SAM analogue was found to serve as an orthogonal SAM cofactor. This analogue is preferentially utilized by the mutant methyltransferase relative to the wild-type enzyme with a selectivity greater than 67. This specific enzyme/inhibitor and enzyme/substrate design should be applicable to other members of this protein family and facilitate the characterization of protein methyltransferase function in vivo when combined with RNA expression analysis.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

O-11: N-a-acetyltransferase 10 Protein Regulates DNA Methylation and Embryonic Development

Background Genomic imprinting is a heritable and developmentally essential phenomenon by which gene expression occurs in an allele-specific manner1. While the imprinted alleles are primarily silenced by DNA methylation, it remains largely unknown how methylation is targeted to imprinting control region (ICR), also called differentially methylated region (DMR), and maintained. Here we show that ...

متن کامل

Thiopurine S-methyltransferase and Pemphigus Vulgaris: A Phenotype-Genotype Study

Background & Objective:  Thiopurine drugs are considered as a treatment modality in various autoimmune disorders including pemphigus vulgaris (PV). These drugs are metabolized by an enzyme “Thiopurine S-methyl transferase” (TPMT). Various variants of this enzyme may have decreased activity lead...

متن کامل

Design, synthesis, and kinetic analysis of potent protein N-terminal methyltransferase 1 inhibitors.

The protein N-terminal methyltransferase 1 (NTMT1) methylates the α-N-terminal amines of proteins. NTMT1 is upregulated in a variety of cancers and knockdown of NTMT1 results in cell mitotic defects. Therefore, NTMT1 inhibitors could be potential anticancer therapeutics. This study describes the design and synthesis of the first inhibitor targeting NTMT1. A novel bisubstrate analogue (NAM-TZ-SP...

متن کامل

Protein arginine methyltransferase 1 may be involved in pregnane x receptor-activated overexpression of multidrug resistance 1 gene during acquired multidrug resistant

PURPOSE Pregnane x receptor (PXR) - activated overexpression of the multidrug resistance 1 (MDR1) gene is an important way for tumor cells to acquire drug resistance. However, the detailed mechanism still remains unclear. In the present study, we aimed to investigate whether protein arginine methyl transferase 1(PRMT1) is involved in PXR - activated overexpression of MDR1 during acquired multid...

متن کامل

Structural basis for CARM1 inhibition by indole and pyrazole inhibitors.

CARM1 (co-activator-associated arginine methyltransferase 1) is a PRMT (protein arginine N-methyltransferase) family member that catalyses the transfer of methyl groups from SAM (S-adenosylmethionine) to the side chain of specific arginine residues of substrate proteins. This post-translational modification of proteins regulates a variety of transcriptional events and other cellular processes. ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of the American Chemical Society

دوره 123 47  شماره 

صفحات  -

تاریخ انتشار 2001